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From unstructured to structured data

ÅMost information about real world is unstructured.
Åά!ǘ ǘƘŜ ŀƎŜ ƻŦ мфΣ aŀǊǘƛƴ [ǳǘƘŜǊ ŜƴǘŜǊŜŘ ǘƘŜ ¦ƴƛǾŜǊǎƛǘȅ ƻŦ 9ǊŦǳǊǘΦέ
άhƴ н Wǳƭȅ мрлр ƘŜ ǿŀǎ ǊŜǘǳǊƴƛƴƎ ǘƻ 9ǊŦǳǊǘ ŀŦǘŜǊ ǾƛǎƛǘƛƴƎ Ƙƛǎ ǇŀǊŜƴǘǎ ƛƴ 
MansfeldΦέ

ᵼDid Martin Luther live in Erfurt?

ÅTurning unstructured data into structured form:
Automated knowledge base population (KBP)

ᵼ lived_in ( M_Luther , Erfurt) 0.8942
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Why more structured data?

ÅAggregate and combine information:
ÅComputational social science: 

Detecting real world political events and trends in society 
ώhΩ/ƻƴƴƻǊΣ нлмоΣ нлмтϐ

ÅScience, e.g. Bio-informatics: 
Extracting genome and protein interactions from research publications [Krallingeret 
al., 2017]

ÅMarket research: 
Extracting typical use-cases of food and products 
[Wiegandet al., 2014].

ÅQuery structured data in dialogue systems:
ÅE.g. Flight information [Seneffet al. 1991], In-car assistants [Madotto et al. 2018]
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Traditional relation extraction

ÅComplex retrieval + filtering pipelines

ÅIdentify entities, then predict relation 

ÅProblems with traditional approach
ÅTagging errors, nested entities, type granularity

ÅNon-standard entity types ( t9wΣ[h/ΣhwDΣΧύ
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Problems with traditional approach

ÅάώtƻǇǳƭŀǊ YŀōǳƭϐORGlawmaker [RamazanBashardost]PER, who camps 
ƻǳǘ ƛƴ ŀ ǘŜƴǘ ƴŜŀǊ ǇŀǊƭƛŀƳŜƴǘ ΦΦΦέ
city-of-residence ?

ÅάώIŀƛƎϐPERattended the [US Army]ORGacademy at [West Point]LOCΦΦΦέ
school-attended ?

ÅάώaƛŎƘŀŜƭ {ŀƴŘȅϐPERdied after being [struck by a car]DEATH_CAUSEas he ran 
from ΦΦΦέ
cause-of-death ?
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Recall lost in pipeline

7

5.6 
%

10.4 % 16.6 % 24.9 %
5.4 
%

37.2 %

Document
retrieval

Query
matching Coreference

Named Entity Tag
missing

NE Tag
inexact Classifier

relation extraction pipeline

NE-tagger responsible for 30%
of lost recall



Relation extraction for 
non-standard types
ÅάbŜǳǊŀƭ !ǊŎƘƛǘŜŎǘǳǊŜǎ ŦƻǊ hǇŜƴ-¢ȅǇŜ wŜƭŀǘƛƻƴ !ǊƎǳƳŜƴǘ 9ȄǘǊŀŎǘƛƻƴέ

[Roth, Conforti, Poerner, Karn, Schütze. NLE 2018]

ÅProblem: Named entity recognition

ÅSolution:
ÅRelation prediction without NE tagger

ÅAny subspan can be relation argument

ÅNo restriction on argument types
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Query-driven relation prediction

Query: α!ƭŜȄŀƴŘŜǊ IŀƛƎά

Context: αIŀƛƎ ŀǘǘŜƴŘŜŘ ǘƘŜ ¦{ ŀǊƳȅ ŀŎŀŘŜƳȅ ŀǘ ²ŜǎǘǇƻƛƴǘΦά

ÅTraditional approach:
ÅάώHaig]Queryattended the [US Army]Answeracademy at ²Ŝǎǘ tƻƛƴǘ ΦΦΦέ

school-attended Č Yes / No?
ÅάώHaig]Queryattended the US Army academy at [West Point]AnswerΦΦΦέ

born-in Č Yes / No?
ÅΧ

ÅProposed approach:
ÅάώIŀƛƎϐQueryattended the US Army academy at West Point ΦΦΦέ

school-attended Č Answer?
born-in Č Answer?
Χ
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Query-driven argument extraction
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Model
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Query-driven argument extraction

12

Lagosis a jewelry company org:product



Query-driven argument extraction
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Query-driven argument extraction
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<QUERY> is a jewelry company org:product

Embedding Lookup

Encoder

Extractor

tǊŜŘƛŎǘŜŘ ŀǊƎǳƳŜƴǘΥ άƧŜǿŜƭǊȅέ



Encoder stage

ÅEncode candidate sentence into sequence of vectors.

Χ
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ÅVariants:
ÅBi-Directional Gated Recurrent Units (RNN) [Chung, 2014]

ÅStandard for encoding sequences
ÅInductive bias:global with local bias

ÅConvolutional neural networks (CNN) [Collobert, 2011]

ÅEfficient processing
ÅInductive bias:local

ÅSelf-attention/Google Transformer (ATTN) [Vaswani, 2017]

ÅRelatively recently proposed sequence encoder 
ÅInteraction with non-transformer layers?
ÅInductive bias: weak/global



Extractor stage

ÅSelect subspan (relational argument)

ÅVariants:
ÅPointer network [Vinyals, 2015]

ÅTable filling [Miwa, 2014]

ÅConditional random fields tagger (CRF) [Lample, 2016]
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ÅPredict start position, then end 
position

ÅPredictions dependent, not joint!

ÅMany deep QA models are pointer 
networks

24



ÅDecide for all pairs of start/end 
positions

Å~ joint version of pointer network

ÅLarge number of negative cells
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ÅMark subsequence with I-tags

ÅOptimize global score
ÅLocal label scores (s)

ÅLabel compatibility (A)
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Data set
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Data set

ÅFirst relation extraction data set with focus on 
non-standard types
Åentities Č concepts

ÅRequirements for selecting relations:
ÅMissing argument has non-standard type. 
ƭƻŎŀǘƛƻƴΣ ǇŜǊǎƻƴΣ ƻǊƎŀƴƛȊŀǘƛƻƴΣΧ
ÅOpen class. Wide range of admissible values (>1000).
ƎŜƴŘŜǊΣΧ
ÅSubstantial coverage.> 10000 facts in Wikidatafor 

relation.

ÅDistant supervision from WikiDataand Wikipedia
ÅSPARQL
ÅElasticsearch
ÅEntity expansion
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Relations (examples)
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Experiments
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Comparison: all combinations

ÅF1-scores

ÅBest encoder / extractor: RNN / CRF

ÅSelf-attention disappoints
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Pointer 
Network

TableFilling Neural CRF

RNN 78.99 79.64 81.86

CNN 79.41 79.11 79.61

Self-Attention 74.49 75.89 74.35



Baselines

ÅBi-Directional Attention-Flow (BiDAF/ AllenAi, Seo et al. 2017)
ÅNeural question answering model

ÅPointer mechanism

ÅFor our task: 
Relation is 1-ǿƻǊŘ ǉǳŜǎǘƛƻƴ όαƻǊƎΥǇǊƻŘǳŎǘ Κάύ

ÅPosition-aware Attention (PosAtt/ Stanford, Zhang et al. 2017)
ÅNeural relation classification model

ÅPredicts relation given marked candidate arguments

ÅFor our task :
Use answers from training data to match answer candidates in dev/test.
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Comparison with baselines

Prec Rec F1

BiDAF 70.86 78.76 74.60

PosAtt 83.65 72.11 77.45

CNN / CRF 82.59 76.84 79.61

RNN / Table 77.92 81.44 79.64

RNN / CRF 82.53 81.19 81.86
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Ablation Analysis: Input encoding
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F1 improvement when (re-)adding embedding



Examples

Å'' The Emperor 's New Clothes '' is a Danish fairy tale written by [Hans 
Christian Andersen]Query and first published in 1837 .  
Årelation: per:notable_work

Ågold answer: The Emperor 's New Clothes 

Åpredicted: The Emperor 's New Clothes 

ÅLucas won the 1977 Academy Award for Film Editingwith [Richard 
Chew]Query and Paul Hirsch for her work editing `` Star Wars . ''  
Årelation: per:award_received

Ågold answer: Academy Award for Film Editing 

Åpredicted: Academy Award for Film Editing
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Example: wrong span

ÅNorth Star ( anti-slavery newspaper ) North Star was a nineteenth-
century anti-slaverynewspaper published from the TalmanBuilding 
in Rochester , New York by abolitionist [Frederick Douglass]Query.
Årelation: per:field_of_work

Ågold answer: anti-slavery

Åpredicted: abolitionist
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Example: missed answer

ÅGame Show Network Game Show Network ( GSN ) is an American 
digital cable and satellite television channel that is owned as a joint 
venture between Sony Pictures Television ( owning a controlling 58 % 
interest ) and [AT & T]Query Entertainment Group ( holding a 42 % 
ownership stake ) .
Årelation: org:product_material_produced

Ågold answer: satellite television

Åpredicted:-
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„End-to-end“

ÅWe successfully removed the NE-tagger.
ÅOK, but what about the rest of the pipeline?

ÅHow far is it reasonable to go? How many IR-steps to replace by deep 
models?
ÅEmbed the web for each query?
ÅIf deep, then
Åhow wide? (how many instances) 
Åhow deep? (interactions modeled)

Åα5ŜŜǇά ǊŜ-rankers ċČ reasoning with memory networks

ÅNeeds to be carefully explored for each task!
ÅInteresting: very deep reasoning on limited amount of retrieved instances
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Conclusion

ÅFirst work to focus on non-standard entities in relation extraction
ÅData set with 12 relations for non-standard types

ÅReplaced named entity tagger by deep argument extraction model

ÅCompetitive neural encoder-extractor architecture
ÅRNN, CNN, Self-Attention

ÅPointer, Table filling, CRF

ÅWhat's the best place for deep learning in pipelined architectures?
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