

Relation extraction for non-standard types

Benjamin Roth, Ludwig Maximilian University Munich

work with Costanza Conforti, Nina Poerner, Sanjeev Karn, Hinrich Schütze

From unstructured to structured data LNU

- Most information about real world is unstructured.
 - "At the age of 19, Martin Luther entered the University of Erfurt."
 "On 2 July 1505 he was returning to Erfurt after visiting his parents in Mansfeld."
 - \Rightarrow Did Martin Luther live in Erfurt?
- Turning unstructured data into structured form:

Automated knowledge base population (KBP)

 \Rightarrow lived_in(M_Luther, Erfurt) 0.8942

Why more structured data?

- Aggregate and combine information:
 - Computational social science:

Detecting real world political events and trends in society [O'Connor, 2013, 2017]

• Science, e.g. Bio-informatics:

Extracting genome and protein interactions from research publications [Krallinger et al., 2017]

• Market research:

Extracting typical use-cases of food and products [Wiegand et al., 2014].

- Query structured data in dialogue systems:
 - E.g. Flight information [Seneff et al. 1991], In-car assistants [Madotto et al. 2018]

Traditional relation extraction

- Complex retrieval + filtering pipelines
- Identify entities, then predict relation
- Problems with traditional approach
 - Tagging errors, nested entities, type granularity
 - *Non-standard entity types* (≠PER,LOC,ORG,...)

Problems with traditional approach

- "[Popular Kabul]_{ORG} lawmaker [Ramazan Bashardost]_{PER}, who camps out in a tent near parliament ..."
 city-of-residence ?
- "[Haig]_{PER} attended the [US Army]_{ORG} academy at [West Point]_{LOC} ..."
 school-attended ?
- "[Michael Sandy]_{PER} died after being [struck by a car]_{DEATH_CAUSE} as he ran from ..."
 cause-of-death ?

Recall lost in pipeline

relation extraction pipeline

Relation extraction for non-standard types

- "Neural Architectures for Open-Type Relation Argument Extraction" [Roth, Conforti, Poerner, Karn, Schütze. NLE 2018]
- Problem: Named entity recognition

• Solution:

- Relation prediction without NE tagger
- Any subspan can be relation argument
- No restriction on argument types

Query: "Alexander Haig"

Context: "Haig attended the US army academy at Westpoint."

- Traditional approach:
 - "[Haig]_{Query} attended the [US Army]_{Answer} academy at West Point ..." school-attended → Yes / No?
 - *"*[Haig]_{Query} attended the US Army academy at [West Point]_{Answer} …"
 born-in → Yes / No?
 - .
- Proposed approach:
 - *"*[Haig]_{Query} attended the US Army academy at West Point …"
 school-attended → Answer?
 born-in → Answer?

Model

Lagos is a jewelry company org:product

<QUERY> is a jewelry company org:product

tion	Relation emb. (repeat)	<i>←</i>		
enta	Position embs.]		
pres	Suffix embs.]		
ut re	Prefix embs.]		
Inp	Word embs.]	Relatio	on emb.

<QUERY> is a jewelry company or

org:product

Encoder stage

• Encode candidate sentence into sequence of vectors.

- Variants:
 - Bi-Directional Gated Recurrent Units (RNN) [Chung, 2014]
 - Standard for encoding sequences
 - Inductive bias: global with local bias
 - Convolutional neural networks (CNN) [Collobert, 2011]
 - Efficient processing
 - Inductive bias: local
 - Self-attention/Google Transformer (ATTN) [Vaswani, 2017]
 - Relatively recently proposed sequence encoder
 - Interaction with non-transformer layers?
 - Inductive bias: weak/global

Extractor stage

- Select subspan (relational argument)
- Variants:
 - Pointer network [Vinyals, 2015]
 - Table filling [Miwa, 2014]
 - Conditional random fields tagger (CRF) [Lample, 2016]

- Predict start position, then end position
- Predictions dependent, not joint!
- Many deep QA models are pointer networks

$$\bar{\mathbf{s}} = ReLU(W^sPool(H))$$

$$p(start = i) = softmax(MLP([\bar{\mathbf{s}}; \mathbf{h}_i]))$$

- Decide for all pairs of start/end positions
- ~ joint version of pointer network
- Large number of negative cells

$$p(is_answer = True|start = i, end = j)$$
$$= \sigma([\mathbf{h}_i; \mathbf{h}_j]^T \mathbf{w}^{(table)})$$

- Mark subsequence with I-tags
- Optimize global score
 - Local label scores (s)
 - Label compatibility (A)

$$s(H, \mathbf{y}) = \sum_{i=0}^{n} A_{y_i, y_{i+1}} + \sum_{i=1}^{n} s_{i, y_i}$$

Data set

Data set

- First relation extraction data set with focus on non-standard types
 - entities → concepts
- Requirements for selecting relations:
 - Missing argument has **non-standard type**. location, person, organization,...
 - Open class. Wide range of admissible values (>1000). gender,...
 - **Substantial coverage.** > 10000 facts in Wikidata for relation.
- Distant supervision from WikiData and Wikipedia
 - SPARQL
 - Elasticsearch
 - Entity expansion

relation	id	#sentences
per:occupation	P106	57693
per:position_held	P39	47386
per:conflict	P607	20575
per:notable_work	P800	18826
per:participant_of	P1344	14646
per:award_received	P166	13330
<pre>per:field_of_work</pre>	P101	13059
org:industry	P452	12352
per:noble_family	P53	9260
per:ethnic_group	P172	7169
org:product	P1056	6482
gpe:office	P1313	3781

Relations (examples)

org:product

 $[Lagos]_Q$ is a privately held American $[jewelry]_A$ company

Experiments

Comparison: all combinations

	Pointer Network	Table Filling	Neural CRF
RNN	78.99	79.64	81.86
CNN	79.41	79.11	79.61
Self-Attention	74.49	75.89	74.35

- F1-scores
- Best encoder / extractor: RNN / CRF
- Self-attention disappoints

Baselines

- Bi-Directional Attention-Flow (BiDAF / AllenAi, Seo et al. 2017)
 - Neural question answering model
 - Pointer mechanism
 - For our task: Relation is 1-word question ("org:product ?")
- Position-aware Attention (PosAtt / Stanford, Zhang et al. 2017)
 - Neural relation classification model
 - Predicts relation given marked candidate arguments
 - For our task :

Use answers from training data to match answer candidates in dev/test.

Comparison with baselines

	Prec	Rec	F1
Bidaf	70.86	78.76	74.60
PosAtt	83.65	72.11	77.45
CNN / CRF	82.59	76.84	79.61
RNN / Table	77.92	81.44	79.64
RNN / CRF	82.53	81.19	81.86

Ablation Analysis: Input encoding

Input

< t QUERY> is a jewelry company

org:product

Examples

- "*The Emperor 's New Clothes* " is a Danish fairy tale written by [Hans Christian Andersen]_{Query} and first published in 1837 .
 - relation: per:notable_work
 - gold answer: The Emperor 's New Clothes
 - predicted: The Emperor 's New Clothes
- Lucas won the 1977 *Academy Award for Film Editing* with [Richard Chew]_{Query} and Paul Hirsch for her work editing `` Star Wars . ''
 - relation: per:award_received
 - gold answer: Academy Award for Film Editing
 - predicted: Academy Award for Film Editing

Example: wrong span

- North Star (anti-slavery newspaper) North Star was a nineteenthcentury *anti-slavery* newspaper published from the Talman Building in Rochester, New York by *abolitionist* [Frederick Douglass]_{Query}.
 - relation: per:field_of_work
 - gold answer: anti-slavery
 - predicted: abolitionist

Example: missed answer

- Game Show Network Game Show Network (GSN) is an American digital cable and *satellite television* channel that is owned as a joint venture between Sony Pictures Television (owning a controlling 58% interest) and [AT & T]_{Query} Entertainment Group (holding a 42% ownership stake).
 - relation: org:product_material_produced
 - gold answer: **satellite television**
 - predicted: -

"End-to-end"

- We successfully removed the NE-tagger.
- OK, but what about the rest of the pipeline?
- How far is it reasonable to go? How many IR-steps to replace by deep models?
 - Embed the web for each query?
 - If deep, then
 - how wide? (how many instances)
 - how deep? (interactions modeled)
 - "Deep" re-rankers ←→ reasoning with memory networks
- Needs to be carefully explored for each task!
- Interesting: very deep reasoning on limited amount of retrieved instances

Conclusion

- First work to focus on non-standard entities in relation extraction
 - Data set with 12 relations for non-standard types
- Thank You! Thank You! Questions? • Replaced named entity tagger by deep argument extraction model
- Competitive neural encoder-extractor architecture
 - RNN, CNN, Self-Attention
 - Pointer, Table filling, CRF
- What's the best place for deep learning in pipelined architectures?